A Potential ceRNA Network for Neurological Damage in Preterm Infants

Author:

Huang Jin1ORCID,Liang Xuejing1,Cai Zhenyu1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Aviation General Hospital of China Medical University, Beijing, China

Abstract

Objective. This study is aimed at identifying key genes involved in neurological damage in preterm infants and at determining their potential circRNA-miRNA-mRNA regulatory mechanisms. Methods. Differentially expressed miRNAs, mRNAs, and circRNAs were downloaded from the GEO database. GO and KEGG enrichment analyses were used to determine possible relevant functions of differentially expressed mRNAs. The TTRUST database was used to predict differential TF-mRNA regulatory relationships. Then, CircMIR, miRDB, TargetScan and miRTarBase were then used to map circRNA/miRNA-TF/mRNA interaction networks. Finally, GSEA enrichment analysis was performed on the core transcription factors. Results. A total of 640 mRNAs, 139 circRNAs, and 206 differentially expressed miRNAs associated with neurological injury in preterm infants were obtained. Based on the findings of Cytoscape and PPI network analysis, the hsa_circ_0008439-hsa-mir-3665-STAT3-MMP3 regulatory axis was established. GSEA analysis revealed that suppressed expression levels of STAT3 were associated with upregulated oxidative phosphorylation pathways in the neurological injury group of preterm infants. Conclusions. The circRNA-miRNA-TF-mRNA regulatory network of neurological injury in preterm infants can be used to elucidate on the pathogenesis of brain injury and help us with the early detection of brain injury in preterm infants.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3