Research on Night Tourism Recommendation Based on Intelligent Image Processing Technology

Author:

Li Meng1,Fan Ning2ORCID

Affiliation:

1. Baotou Teachers’ College, Inner Mongolia, Baotou 014030, China

2. Capital Normal University, Beijing 100089, China

Abstract

The rapid development of the tourism industry and the Internet era has led to an increasingly severe problem of travel information overload, and travel recommendation methods are essential to solving the information overload problem. Traditional recommendation algorithms only target common travel scenarios during the daytime, combining the ratings and necessary attributes between users and items to calculate similarity for a recommendation. Still, the research on night travel recommendations is one of the few scenarios that needs to be explored urgently. This paper, based on histogram equalization, achieves better experimental results on image enhancement, combines convolutional neural network technology with night image and text comment feature extraction technology, and evaluates the resulting error with mean absolute error (MAE). This paper presents the first night travel recommendation system. It compares it with the traditional collaborative filtering method, and the model proposed in this paper can effectively reduce the prediction error.

Funder

Education Department of Inner Mongolia Autonomous Region

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference25 articles.

1. Deep learning based social-aware location recommendation;W. Lei;Journal of Terahertz Science and Electronic Information Technology,2019

2. Review of the art of recommendation algorithms;Y. Bo;Journal of Shanxi University (Natural Science Edition),2011

3. An Overview of Collaborative Filtering Recommendation Algorithm

4. Recommendation algorithm based on circular neural network;M. T. Gao;Computer Engineering,2019

5. Bilateral filtering for gray and color images

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3