Affiliation:
1. Department of Neurology, Gucheng County Hospital, Hengshui 253800, China
Abstract
Cerebral haemorrhage is a serious subtype of stroke, with most patients experiencing short-term haematoma enlargement leading to worsening neurological symptoms and death. The main hemostatic agents currently used for cerebral haemorrhage are antifibrinolytics and recombinant coagulation factor VIIa. However, there is no clinical evidence that patients with cerebral haemorrhage can benefit from hemostatic treatment. We provide an overview of the mechanisms of haematoma expansion in cerebral haemorrhage and the progress of research on commonly used hemostatic drugs. To improve the semantic segmentation accuracy of cerebral haemorrhage, a segmentation method based on RGB-D images is proposed. Firstly, the parallax map was obtained based on a semiglobal stereo matching algorithm and fused with RGB images to form a four-channel RGB-D image to build a sample library. Secondly, the networks were trained with 2 different learning rate adjustment strategies for 2 different structures of convolutional neural networks. Finally, the trained networks were tested and compared for analysis. The 146 head CT images from the Chinese intracranial haemorrhage image database were divided into a training set and a test set using the random number table method. The validation set was divided into four methods: manual segmentation, algorithmic segmentation, the exact Tada formula, and the traditional Tada formula to measure the haematoma volume. The manual segmentation was used as the “gold standard,” and the other three algorithms were tested for consistency. The results showed that the algorithmic segmentation had the lowest percentage error of 15.54 (8.41, 23.18) % compared to the Tada formula method.
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献