Impact of Early Intravenous Haemostatic Drugs on Brain Haemorrhage Patients and Their Image Segmentation Based on RGB-D Images

Author:

Wang Zhenzhen1,Mou Yating1,Li Hao1,Yang Rui1ORCID,Jia Yanxun1

Affiliation:

1. Department of Neurology, Gucheng County Hospital, Hengshui 253800, China

Abstract

Cerebral haemorrhage is a serious subtype of stroke, with most patients experiencing short-term haematoma enlargement leading to worsening neurological symptoms and death. The main hemostatic agents currently used for cerebral haemorrhage are antifibrinolytics and recombinant coagulation factor VIIa. However, there is no clinical evidence that patients with cerebral haemorrhage can benefit from hemostatic treatment. We provide an overview of the mechanisms of haematoma expansion in cerebral haemorrhage and the progress of research on commonly used hemostatic drugs. To improve the semantic segmentation accuracy of cerebral haemorrhage, a segmentation method based on RGB-D images is proposed. Firstly, the parallax map was obtained based on a semiglobal stereo matching algorithm and fused with RGB images to form a four-channel RGB-D image to build a sample library. Secondly, the networks were trained with 2 different learning rate adjustment strategies for 2 different structures of convolutional neural networks. Finally, the trained networks were tested and compared for analysis. The 146 head CT images from the Chinese intracranial haemorrhage image database were divided into a training set and a test set using the random number table method. The validation set was divided into four methods: manual segmentation, algorithmic segmentation, the exact Tada formula, and the traditional Tada formula to measure the haematoma volume. The manual segmentation was used as the “gold standard,” and the other three algorithms were tested for consistency. The results showed that the algorithmic segmentation had the lowest percentage error of 15.54 (8.41, 23.18) % compared to the Tada formula method.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3