Adaptive Fast Independent Component Analysis Methods for Mitigating Multipath Effects in GNSS Deformation Monitoring

Author:

Yuan Rong1,Xie Shengli2ORCID,Li Zhenni3,He Zhaoshui4

Affiliation:

1. School of Automation, Guangdong University of Technology and Guangdong Key Laboratory of IoT Information Technology, Guangzhou 510006, China

2. Key Laboratory of Intelligent Information Processing and System Integration of IoT (GDUT) and Key Laboratory of Intelligent Detection and The Internet of Things in Manufacturing (GDUT), Ministry of Education, Guangzhou 510006, China

3. School of Automation, Guangdong University of Technology and 111 Center for Intelligent Batch Manufacturing Based on IoT Technology (GDUT), Guangzhou 510006, China

4. School of Automation, Guangdong, Guangdong University of Technology and Guangdong-HongKong-Macao Joint Laboratory for Smart Discrete Manufacturing (GDUT), Guangzhou 510006, China

Abstract

Carrier-phase multipath is the main problem of GNSS deformation monitoring. Traditional methods usually adopt sidereal day filtering to mitigate the multipath. However, the necessity of presetting the session duration of the static baseline solution reduces the timeliness of the methods in real engineering. Moreover, these methods are not suitable for the systems that contain different types of GNSS satellites (e.g., BDS). To address the problems, this paper proposes an Adaptive Fast Independent Component Analysis (AF-ICA) method for mitigating multipath effects in GNSS deformation monitoring, which can effectively process the multi-GNSS data and separate several multipath signals. In the experimental study, compared with Sidereal Filtering in Observation Domain (SF-OD) method, AF-ICA method can improve both the positioning accuracy and peak-to-peak value. In GNSS deformation monitoring positioning accuracy, AF-ICA method can achieve the root-mean-square (RMS) of 1 mm horizon-tally and 2 mm vertically. Compared with the MSF method, the positioning accuracy of the AF-ICA method in the direction of ENU is improved by 44%, 14%, and 31%, respectively, and the corresponding peak-to-peak values increased by 36%, 17%, and 29%, respectively. Our proposed method can automatically get the monitoring information without estimating the orbit period in advance to realize automatic deformation monitoring. Through the automatic monitoring solution, the AF-ICA method in this paper can be applied to the natural disaster monitoring in the Internet of Things and provides real-time data monitoring information for disaster early warning.

Funder

Key Research and Development Program of Guangdong Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3