Auxiliary Diagnosis of Lung Cancer with Magnetic Resonance Imaging Data under Deep Learning

Author:

Xia Lei1ORCID

Affiliation:

1. Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China

Abstract

This study was aimed at two image segmentation methods of three-dimensional (3D) U-shaped network (U-Net) and multilevel boundary sensing residual U-shaped network (RUNet) and their application values on the auxiliary diagnosis of lung cancer. In this study, on the basis of the 3D U-Net segmentation method, the multilevel boundary sensing RUNet was worked out after optimization. 92 patients with lung cancer were selected, and their clinical data were counted; meanwhile, the lung nodule detection was performed to obtain the segmentation effect under 3D U-Net. The accuracy of 3D U-Net and multilevel boundary sensing RUNet was compared on lung magnetic resonance imaging (MRI) after lung nodule segmentation. Patients with benign lung tumors were taken as controls; the blood immune biochemical indicators progastrin-releasing peptide (pro-CRP), carcinoembryonic antigen (CEA), and neuron-specific enolase (NSE) in patients with malignant lung tumors were analyzed. It was found that the accuracy, sensitivity, and specificity were all greater than 90% under the algorithm-based MRI of benign and malignant tumor patients. Based on the imaging signs for the MRI image of lung nodules, the segmentation effect of the RUNet was clearer than that of the 3D U-Net. In addition, serum levels of pro-CRP, NSE, and CAE in patients with benign lung tumors were 28.9 pg/mL, 12.5 ng/mL, and 10.8 ng/mL, respectively, which were lower than 175.6 pg/mL, 33.6 ng/mL, and 31.9 ng/mL in patients with malignant lung tumors significantly ( P < 0.05 ). Thus, the RUNet image segmentation method was better than the 3D U-Net. The pro-CRP, CEA, and NSE could be used as diagnostic indicators for malignant lung tumors.

Funder

Chongqing Science and Health Combined Medical Research Project

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3