Tanshinone IIA Pretreatment Protects H9c2 Cells against Anoxia/Reoxygenation Injury: Involvement of the Translocation of Bcl-2 to Mitochondria Mediated by 14-3-3η

Author:

Zhang Zeyu12,He Huan2ORCID,Qiao Yang2,Huang Jiyi2,Wu Zelong2,Xu Ping2,Yin Dong3ORCID,He Ming1ORCID

Affiliation:

1. Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China

2. Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China

3. Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China

Abstract

Tanshinone IIA is an important component that is isolated from danshen (Salvia miltiorrhiza), which is known to be beneficial for cardiovascular health. In this study, we determined the effects of Tanshinone IIA and its underlying mechanisms of action in an anoxia/reoxygenation (A/R) cell line model. Prior to inducing A/R injury, rat cardiomyocyte-derived cell line H9c2 was stimulated with 8 μM of Tanshinone IIA for 48 hours. When compared with the A/R group, the Tanshinone IIA treatment significantly increased cell viability and decreased lactate dehydrogenase activity. Tanshinone IIA upregulated 14-3-3η expression and facilitated Bcl-2 translocation to the mitochondrial outer membrane, which bound with voltage-dependent anion channel 1. In addition, pretreatment with Tanshinone IIA reduced the generation of reactive oxygen species and cytochrome c release, inactivated caspase-3, prevented mitochondrial permeability transition pore opening, and reduced the percentage of apoptotic cells. Moreover, treatment with Tanshinone IIA reduced the level of malondialdehyde, thereby increasing the activity of superoxide dismutase and glutathione peroxidase. Silencing the expression of 14-3-3η by adenovirus blocked the above-mentioned results. These novel findings showed that pretreatment with Tanshinone IIA alleviated H9c2 cell damage against A/R injury and was associated with upregulation of 14-3-3η, thereby facilitating Bcl-2 translocation to the mitochondrial outer membrane and preventing mitochondrial permeability transition pore opening, decreasing cytochrome c release, preventing caspase-3 activation, and restraining apoptosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3