Optimal Modeling of Anti-Breast Cancer Candidate Drugs Based on Graph Model Feature Selection

Author:

Chen Rongyuan1ORCID,He Zhixiong2ORCID,Huang Shaonian1ORCID,Shen Lizhi1ORCID,Zhou Xiancheng1ORCID

Affiliation:

1. Key Laboratory of Hunan Province for Statistical Learning and Intelligent Computation, Hunan University of Technology and Business, Hunan Changsha 410205, China

2. Hunan University of Technology and Business, Hunan Changsha 410205, China

Abstract

Breast cancer is one of the most widespread and fatal cancers in women. At present, anticancer drug-inhibiting estrogen receptor α subtype (ER α ) can greatly improve the cure rate for breast cancer patients, so the research and development of this kind of drugs are very urgent. In this paper, the problem of how to screen excellent anticancer drugs is abstracted as an optimization problem. Firstly, the graph model is used to extract low-dimensional features with strong distinguishing and describing ability according to various attributes of candidate compounds, and then, kernel functions are used to map these features to high-dimensional space. Then, the quantitative analysis model of ER α biological activity and the classification model based on ADMET properties of the support vector machine are constructed. Finally, sequential least square programming (SLSQP) is utilized to solve the ER α biological activity model. The experimental results show that for anticancer data sets, compared with principal component analysis (PCA), the error rate of the graph model constructed in this paper is reduced by 6.4%, 15%, and 7.8% on mean absolute error (MAE), mean squared error (MSE), and root mean square error (RMSE), respectively. In terms of classification prediction, compared with principal component analysis (PCA), the recall and precision rates of this method are enhanced by 19.5% and 12.41%, respectively. Finally, the optimal biological activity value (IC50_nM) 34.6 and inhibitory biological activity value (pIC50) 7.46 were obtained.

Funder

Philosophy and Social Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3