Sports Policy and Training Decision Support Method Based on Wireless Sensor Network

Author:

Li Zhi12ORCID

Affiliation:

1. Department of Education, Shaanxi Normal University, Xi’an, 710058 Shaanxi, China

2. School of Physical Education, Xi’an University, Xi’an, 710065 Shaanxi, China

Abstract

In recent years, the awareness of sports departments at all levels of society to promote sports through science and has been increasing, and the scientific decision-making and management of sports have been improved to a great extent. With the application of scientific decision-making combined with a real-time sports data monitoring network, the opponent’s advance information can be effectively observed during the game and reasonable decisions can be made to deal with the opponent’s offense. Therefore, high-level athletes appear to be more relaxed and calm in the game. It first requires the application of advanced information collection methods to obtain sports data quickly, in real time and at low cost, and extract information about athletes’ scientific management decision-making from massive data and then make scientific management decisions for sports training. The modern sports method is highly open, and big data mining also profoundly affects the relevant decision-making of sports training. How to design appropriate decision support tools to grasp the key points of the problem in sports information data and make reasonable and correct decisions is a problem that is closely watched by macro decision-makers and coaches at all levels. This article mainly introduces the training decision support method derived from data mining and intends to provide some technical directions for making scientific decisions in sports training. This paper proposes related algorithms of a training decision support method derived from data mining, including training effectiveness prediction model and decision tree algorithm, for the design of the training decision support method derived from data mining. Experimental data shows that the average error between the prediction of the effectiveness of the training method and the actual situation of the training decision support method in this paper is 0.913%, which is helpful for the management or coach to make decisions.

Funder

Social Science Fund of Xi’an

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference33 articles.

1. Collective data-sanitization for preventing sensitive information inference attacks in social networks;Z. Cai;IEEE Transactions on Dependable & Secure Computing,2018

2. A cloud-aided privacy-preserving multi-dimensional data comparison protocol

3. A Private and Efficient Mechanism for Data Uploading in Smart Cyber-Physical Systems

4. Data mining algorithms: an overview;S. R. Joseph;Neuroscience,2016

5. Effective data mining using neural networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3