Wake Measurements behind an Oscillating Airfoil in Dynamic Stall Conditions

Author:

Zanotti A.1ORCID,Gibertini G.1,Grassi D.1,Spreafico D.1ORCID

Affiliation:

1. Politecnico di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali, Campus Bovisa, Via La Masa 34, 20156 Milano, Italy

Abstract

The unsteady flow field in the wake of an NACA 23012 pitching airfoil was investigated by means of triple hot-wire probe measurements. Wind tunnel tests were carried out both in the light and deep dynamic stall regimes. The analysis of the wake velocity fields was supported by the measurements of unsteady flow fields and airloads. In particular, particle image velocimetry surveys were carried out on the airfoil upper surface, while the lift and pitching moments were evaluated integrating surface pressure measurements. In the light dynamic stall condition, the wake velocity profiles show a similar behaviour in upstroke and in downstroke motions as, in this condition, the flow on the airfoil upper surface is attached for almost the whole pitching cycle and the airloads show a small amount of hysteresis. The deep dynamic stall measurements in downstroke show a large extent of the wake and a high value of the turbulent kinetic energy due to the passage of strong vortical structures, typical of this dynamic stall regime. The comprehensive experimental database can be considered a reference for the development and validation of numerical tools for such peculiar flow conditions.

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wake measurements of oscillating supercritical airfoil in compressible flow;Transactions of the Canadian Society for Mechanical Engineering;2019-03-01

2. Numerical investigations of the vortex interactions for a flow over a pitching foil at different stages;Journal of Fluids and Structures;2015-10

3. Experimental investigation of a trailing edge L-shaped tab on a pitching airfoil in deep dynamic stall conditions;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2013-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3