Optimized Removal of Hydroquinone and Resorcinol by Activated Carbon Based on Shea Residue (Vitellaria paradoxa): Thermodynamics, Adsorption Mechanism, Nonlinear Kinetics, and Isotherms

Author:

Amola Liouna Adoum1ORCID,Kamgaing Theophile1ORCID,Tiegam Tagne Rufis Fregue2ORCID,Atemkeng Cyrille Donlifack1ORCID,Kuete Idris-Hermann Tiotsop1ORCID,Anagho Solomon Gabche1ORCID

Affiliation:

1. Research Unit of Noxious Chemistry and Environmental Engineering, Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon

2. Department of Paper Sciences and Bioenergy, University Institute of Wood Technology, University of Yaounde I, Mbalmayo, Cameroon

Abstract

The present work demonstrates the adsorption of hydroquinone (HQ) and resorcinol (R) by activated carbon based on shea residue (Vitellaria paradoxa). The adsorbent was prepared chemically by impregnation with sulfuric acid and coded by the acronym CAK-S. The central composite design (CCD) was used to optimize the main factors that influence the adsorption of HQ or R by activated carbon such as the initial concentration, the pH of the solution, the contact time, and the mass of the carbon on the expected response, which is the adsorbed quantity of the target pollutants. The optimal conditions obtained from the statistical analysis are as follows: concentration of 158 mg/L, pH 3, time of 120 min, and mass of 50 mg for the adsorption of HQ and concentration of 180 mg/L, pH 3, time of 86 min, and mass of 118 mg for the adsorption of R. The maximum quantities of HQ and R adsorbed are 45.02 mg/g and 33.65 mg/g, respectively. The analysis of variance (ANOVA) showed a good relationship between the variables involved with the coefficients of determination R2 = 98.69% for the adsorption of hydroquinone and R2 = 90.55% for that of resorcinol, which means that the model is more suitable to express the adsorbed amount according to the four optimized parameters. The experimental data obtained under these optimal conditions were simulated with two and three parameter nonlinear isotherm models as well as kinetic models. The results show that Elovich kinetic model better describes the adsorption of HQ and R, indicating chemisorption with heterogeneous active sites on the surface of CAK-S. Temkin’s two-parameter model shows that adsorption occurs on heterogeneous surfaces with a nonuniform adsorption energy distribution at the surface and Sips’s three-parameter model confirms the heterogeneity of the surface with a localized adsorption of HQ or R by CAK-S. The thermodynamics study has shown that the adsorption is endothermic ( Δ H 0 > 0 ) and spontaneous ( Δ G 0 < 0 ).

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3