Exosomes of Antler Mesenchymal Stem Cells Improve Postoperative Cognitive Dysfunction in Cardiopulmonary Bypass Rats through Inhibiting the TLR2/TLR4 Signaling Pathway

Author:

Yang Chun12ORCID,Sun Shengnan12,Zhang Qi12,Guo Jia12,Wu Tengfei3,Liu Ying12,Yang Min12,Zhang Yan4ORCID,Peng Yinghua12ORCID

Affiliation:

1. Institute of Special Wild Economic Animal and Plants, Chinese Academy of Agricultural Sciences, Changchun, China

2. State Key Laboratory for Molecular Biology of Special Economic Animal, Changchun, China

3. Department of Laboratory Animal Science, China Medical University, Shenyang, China

4. Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China

Abstract

Postoperative cognitive dysfunction (POCD) is a severe complication of cardiopulmonary bypass (CPB) and has common characteristics such as acute cognitive dysfunction, impaired memory, and inattention. Mesenchymal stem cells (MSCs) are multipotent cells that have therapeutic potentials mainly through paracrine action via secreting growth factors and cytokines. Exosomes are one of the important paracrine factors and have been reported as potential cell-free therapy for the treatment of autoimmune and central nervous system disorders. In this study, we examined exosomes derived from antler MSCs (AMSCs) of POCD rats after CPB and evaluated their potential regulatory mechanisms. AMSC-derived exosomes reduced neurological damage and brain damage and prevent apoptosis in CPB rats. Furthermore, AMSC-derived exosomes were found to reduce hippocampal neuronal apoptosis and the expression of TLR2, TLR4, MyD88, and NF-κB in CPB rats. However, the above effects of AMSC-derived exosomes on CPB rats were abolished partially by toll-like receptor 2/4 (TLR2/TLR4) agonist (LPS-EB). In conclusion, AMSC-derived exosomes can improve cognitive function in CPB rats through inhibiting the TLR2/TLR4 signaling pathway.

Funder

Natural Science Foundation of Jilin Province

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3