Ship Tracking Based on Underwater Electric Potential

Author:

Sun Baoquan12,Yan Bing1,Zhang Jiawei1,Hu Shouwei2ORCID

Affiliation:

1. College of Weapon Engineering, Naval University of Engineering, Wuhan, Hubei 430033, China

2. Science and Technology on Near-Surface Detection Laboratory, Wuxi, Jiangsu 214035, China

Abstract

Underwater Electric Potential is an important signal characteristic of a ship. The signal contains location information which can be used to track the ship. This research tries to study the possibility of ship tracking using Underwater Electric Potential. Aiming at the problems existing in the traditional Kalman filters under large initial errors, a new nonlinear filter is proposed. State space model of ship tracking is established; the problem existing in the ordinary Kalman filters is analyzed from the perspective of Kullbeck-Leibler Divergence; the new algorithm is proposed based on progressive Bayesian; simulations are designed. Simulation results show: it is feasible to use underwater electric potential to track the ship; the new method can effectively improve filter performance under large initial error and can effectively track the ship with preferable precision and convergence, which has great practical value.

Funder

Science and Technology on Near-Surface Detection Laboratory

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3