Research on a High-Speed and Heavy-Duty Closed-Loop Drive System of a Two-Phase Hybrid Stepping Motor Based on a Hybrid Controller

Author:

Yansuo Zhou12ORCID,Yonggang Leng1ORCID,Wenqi Lu3ORCID,Yu Li4,Qingmian Li2,Di Wu3

Affiliation:

1. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China

2. Zhejiang Institute of Industry and Information Technology, Hangzhou 310006, China

3. School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China

4. Zhejiang Institute of Modern Agricultural Equipment Design and Research, Hangzhou 310009, China

Abstract

Low load capacity and poor positioning accuracy of stepper motors in high-speed operation are currently two of the bottlenecks that limit their application in high-speed and heavy-duty drive applications. To solve this problem, a hybrid controller is proposed for the high-speed heavy-duty closed-loop stepper motor driving system, which includes two core contents. First, for the position control, a hybrid controller based on position error for open-loop/closed-loop automatic switching-combined spatial current given amplitude and angle automatic adjustment is proposed. Secondly, an advanced angle compensation strategy based on error-integrated feedforward is adopted to compensate for the electrical angle of the combined space current vector. To verify the effectiveness of the proposed method, theoretical analysis and system development as well as testing are carried out. Compared with the traditional open-loop drive system, results show that the maximum operating speed and maximum torque of the newly developed drive system based on the proposed method are improved by 50% and 81.25%, respectively. And at the same set speed and position, the response speed is faster and the accuracy of the steady-state process is higher. In the case of setting higher running speed and load torque, the drive system also maintains high-precision operation.

Funder

Science and Technology Department of Zhejiang Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vector Control Technology of Two-Phase Hybrid Stepping Motor Based on Current Loop PI Regulator;2022 4th International Conference on Robotics and Computer Vision (ICRCV);2022-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3