Affiliation:
1. School of Information and Communication, The University of Suwon, 17 Wauan-gil, Bongdam-eup, Hwaseong-si, Gyeonggi-do 18323, Republic of Korea
Abstract
Smart interference management methods are required to enhance the throughput, coverage, and energy efficiency of a dense small cell network. In this paper, we propose a transmit power control for energy efficient operation of a dense small cell network. We cast the power control problem as a noncooperative game to satisfy the design requirement that small cells do not need any information exchange among them. We analyze the sufficient condition for the existence of a Nash equilibrium (NE) state of the proposed game. We also analyze that the NE state is unique by transforming the original nonlinear fractional programming problem into a nonlinear parametric programming problem. Through simulation studies, we verify our analysis results. In addition, we show that the proposed method achieves higher energy efficiency of a network and balances the energy efficiency among cells more evenly than the methods based on the AIMD (additive increase and multiplicative decrease) algorithm.
Funder
National Research Foundation of Korea (NRF) funded by the Korea government
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献