Soft Schemes for Earthquake-Geotechnical Dilemmas

Author:

García Silvia1

Affiliation:

1. Geotechnical Department, Institute of Engineering, National University of Mexico, Mexico

Abstract

Models of real systems are of fundamental importance in virtually all disciplines because they can be useful for gaining a better understanding of the organism. Models make it possible to predict or simulate a system’s behavior; in earthquake geotechnical engineering, they are required for the design of new constructions and for the analysis of those that exist. Since the quality of the model typically determines an upper bound on the quality of the final problem solution, modeling is often the bottleneck in the development of the whole system. As a consequence, a strong demand for advanced modeling and identification schemes arises. During the past years, soft computing techniques have been used for developing unconventional procedures to study earthquake geotechnical problems. Considering the strengths and weaknesses of the algorithms, in this work a criterion to leverage the best features to develop efficient hybrid models is presented. Via the development of schemes for integrating data-driven and theoretical procedures, the soft computing tools are presented as reliable earthquake geotechnical models. This assertion is buttressed using a broad history of seismic events and monitored responses in complicated soils systems. Combining the versatility of fuzzy logic to represent qualitative knowledge, the data-driven efficiency of neural networks to provide fine-tuned adjustments via local search, and the ability of genetic algorithms to perform efficient coarse-granule global search, the earthquake geotechnical problems are observed, analyzed, and solved under a holistic approach.

Publisher

Hindawi Limited

Subject

Geophysics,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3