Seismic Damage Analysis of Large-Span Tied-Arch Bridge with Concrete-Filled Steel Tubes Subjected to Near-Fault Ground Motion

Author:

Xia Yingzhi1ORCID,Liu Jiawei1ORCID,Li Hui1ORCID,Hu Guoping1ORCID

Affiliation:

1. School of Civil and Transportation Engineering, Henan University of Urban Construction, Longxiang Road, Xincheng Area, Pingdingshan, Henan 467036, China

Abstract

In this study, the damage mechanism due to near-fault ground motions on large-span arch bridges with concrete-filled steel tubes was investigated based on a case study. A tied-arch bridge with concrete-filled steel tubes with a span of 460 m has been examined using the numerical simulation method. The performance of the bridge was analyzed in terms of displacement, overall response, internal force changes, and damage probability considering the various near-fault and non-near-fault ground motions when imposing load onto the bridge. Then, the relationship between the bridge damage and the design parameters of ground motion intensities, near-fault velocity pulse, and excitation angle was obtained. The results indicated that the probability of damage caused by near-fault earthquakes is significantly higher than that by non-near-fault ground motions, and velocity pulses may cause more severe damages to certain components of the bridge during lower-intensity ground motions at certain excitation angles. And the damage furtherly resulted in the weakening of the bridge structure and decrease in its load-carrying capacity. Therefore, the near-fault ground motion should be fully considered in the design of large-span arch bridges with concrete-filled steel tubes in practical engineering.

Funder

Science and Technology Project of Henan Province

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference42 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3