Chemiluminescence of Mn-Doped ZnS Nanocrystals Induced by Direct Chemical Oxidation and Ionic Liquid-Sensitized Effect as an Efficient and Green Catalyst

Author:

Azizi Seyed Naser1,Chaichi Mohammad Javad1,Shakeri Parmis1,Bekhradnia Ahmadreza2ORCID,Taghavi Mehdi3,Ghaemy Mousa3

Affiliation:

1. Analytical Division, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran

2. Pharmaceutical Sciences Research Center, Department of Medicinal Chemistry, Mazandaran University of Medical Sciences, Sari 48175-861, Iran

3. Polymer Chemistry Research Laboratory, Department of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran

Abstract

A novel chemiluminescence (CL) method was proposed for doping water-soluble Mn in ZnS quantum dots (QDs) as CL emitter. Water-soluble Mn-doped ZnS QDs were synthesized by using L-cysteine as stabilizer in aqueous solution. These nanoparticles were structurally and optically characterized by X-ray powder diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), UV-Vis absorption spectroscopy, and photoluminescence (PL) emission spectroscopy. The CL of ZnS QDs was induced directly by chemical oxidation and its ionic liquid-sensitized effect in aqueous solution was then investigated. It was found that oxidants, especially hydrogen peroxide, could directly oxidize ZnS QDs to produce weak CL emission in basic solutions. In the presence of 1,3-dipropylimidazolium bromide/copper, a drastic light emission enhancement was observed which is related to a strong interaction between Cu2+and the imidazolium ring. In these conditions, an efficient CL light was produced at low pH which is suggested to be beneficial to the biological analysis. The CL properties of QDs not only will be helpful to study physical chemistry properties of semiconductor nanocrystals but also they are expected to find use in many fields such as luminescence devices, bioanalysis, and multicolor labeling probes.

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3