Polydatin Protects Diabetic Heart against Ischemia-Reperfusion Injury via Notch1/Hes1-Mediated Activation of Pten/Akt Signaling

Author:

Yu Liming1ORCID,Li Zhi1ORCID,Dong Xue23ORCID,Xue Xiaodong1ORCID,Liu Yu1ORCID,Xu Shu1ORCID,Zhang Jian1ORCID,Han Jinsong1,Yang Yang45ORCID,Wang Huishan1ORCID

Affiliation:

1. Department of Cardiovascular Surgery, General Hospital of Shenyang Military Region, 83 Wenhua Road, Shenyang, Liaoning 110016, China

2. Department of Pharmacy, General Hospital of Shenyang Military Region, 83 Wenhua Road, Shenyang, Liaoning 110016, China

3. Department of Neurosurgery, General Hospital of Shenyang Military Region, 83 Wenhua Road, Shenyang, Liaoning 110016, China

4. Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi’an, Shaanxi 710069, China

5. Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi’an, Shaanxi 710032, China

Abstract

Diabetes exacerbates oxidative/nitrative stress during myocardial ischemia-reperfusion (MI/R) injury. Recent studies highlighted the cardioprotective actions of polydatin. However, its effect on diabetic MI/R injury and the underlying mechanisms remain unknown. This work was undertaken to evaluate the effect of polydatin on diabetic MI/R injury with a focus on Notch1/Hes1 signaling and myocardial oxidative/nitrative stress. Streptozotocin- (STZ-) induced diabetic rats were administered with polydatin (20 mg/kg/d) in the absence or presence of DAPT (a γ-secretase inhibitor) or LY294002 (a PI3K/Akt inhibitor) and then subjected to MI/R injury. Polydatin administration preserved cardiac function and reduced myocardial infarct size. Moreover, polydatin ameliorated myocardial oxidative/nitrative stress damage as evidenced by decreased myocardial superoxide generation, malondialdehyde, gp91phox expression, iNOS expression, NO metabolite level, and nitrotyrosine content and increased eNOS phosphorylation. However, these effects were blocked by DAPT administration. DAPT also inhibited the stimulatory effect of polydatin on the Notch1/Hes1-Pten/Akt signaling pathway in a diabetic myocardium. Additionally, LY294002 not only abolished polydatin’s antiapoptotic effect but also reversed its inhibitory effect on myocardial oxidative/nitrative stress. Polydatin effectively reduced MI/R injury and improved left ventricular functional recovery under diabetic condition by ameliorating oxidative/nitrative stress damage. Importantly, Notch1/Hes1-mediated activation of Pten/Akt signaling played a crucial role in this process.

Funder

Doctoral Scientific Research Foundation of Liaoning Province

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3