Identifying the Prognosis Factors in Death after Liver Transplantation via Adaptive LASSO in Iran

Author:

Raeisi Shahraki Hadi1ORCID,Pourahmad Saeedeh1,Ayatollahi Seyyed Mohammad Taghi1ORCID

Affiliation:

1. Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Despite the widespread use of liver transplantation as a routine therapy in liver diseases, the effective factors on its outcomes are still controversial. This study attempted to identify the most effective factors on death after liver transplantation. For this purpose, modified least absolute shrinkage and selection operator (LASSO), called Adaptive LASSO, was utilized. One of the best advantages of this method is considering high number of factors. Therefore, in a historical cohort study from 2008 to 2013, the clinical findings of 680 patients undergoing liver transplant surgery were considered. Ridge and Adaptive LASSO regression methods were then implemented to identify the most effective factors on death. To compare the performance of these two models, receiver operating characteristic (ROC) curve was used. According to the results, 12 factors in Ridge regression and 9 ones in Adaptive LASSO regression were significant. The area under the ROC curve (AUC) of Adaptive LASSO was equal to 89% (95% CI: 86%–91%), which was significantly greater than Ridge regression (64%, 95% CI: 61%–68%) (p<0.001). As a conclusion, the significant factors and the performance criteria revealed the superiority of Adaptive LASSO method as a penalized model versus traditional regression model in the present study.

Publisher

Hindawi Limited

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3