Road Short-Term Travel Time Prediction Method Based on Flow Spatial Distribution and the Relations

Author:

Deng Mingjun1ORCID,Qu Shiru1

Affiliation:

1. School of Automatic Control, Northwestern Polytechnical University, Xian 710072, China

Abstract

There are many short-term road travel time forecasting studies based on time series, but indeed, road travel time not only relies on the historical travel time series, but also depends on the road and its adjacent sections history flow. However, few studies have considered that. This paper is based on the correlation of flow spatial distribution and the road travel time series, applying nearest neighbor and nonparametric regression method to build a forecasting model. In aspect of spatial nearest neighbor search, three different space distances are defined. In addition, two forecasting functions are introduced: one combines the forecasting value by mean weight and the other uses the reciprocal of nearest neighbors distance as combined weight. Three different distances are applied in nearest neighbor search, which apply to the two forecasting functions. For travel time series, the nearest neighbor and nonparametric regression are applied too. Then minimizing forecast error variance is utilized as an objective to establish the combination model. The empirical results show that the combination model can improve the forecast performance obviously. Besides, the experimental results of the evaluation for the computational complexity show that the proposed method can satisfy the real-time requirement.

Funder

Jiangxi Provincial Natural Science Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting traffic intensity in the urban area of Madrid: Integrating route network topology into a machine-learning model;Engineering Applications of Artificial Intelligence;2024-11

2. Characterisation and Prediction of Motorised Three Wheelers Travel Time in Urban Roadways;Proceedings of the Sixth International Conference of Transportation Research Group of India;2022-09-29

3. A Key Path-Based Deep Learning Approach for Urban Traffic Speed Prediction;Journal of Physics: Conference Series;2021-07-01

4. Sustainable Vehicular Edge Computing Using Local and Solar-Powered Roadside Unit Resources;2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall);2019-09

5. SVM‐based hybrid approach for corridor‐level travel‐time estimation;IET Intelligent Transport Systems;2019-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3