Parallel Solvers for Finite-Difference Modeling of Large-Scale, High-Resolution Electromagnetic Problems in MRI

Author:

Wang Hua1,Trakic Adnan1,Liu Feng1,Li Bing Keong1,Weber Ewald1,Crozier Stuart1

Affiliation:

1. School of Information Technology and Electric Engineering, The University of Queensland, Brisbane, Qld 4072, Australia

Abstract

With the movement of magnetic resonance imaging (MRI) technology towards higher field (and therefore frequency) systems, the interaction of the fields generated by the system with patients, healthcare workers, and internally within the system is attracting more attention. Due to the complexity of the interactions, computational modeling plays an essential role in the analysis, design, and development of modern MRI systems. As a result of the large computational scale associated with most of the MRI models, numerical schemes that rely on a single computer processing unit often require a significant amount of memory and long computational times, which makes modeling of these problems quite inefficient. This paper presents dedicated message passing interface (MPI), OPENMP parallel computing solvers for finite-difference time-domain (FDTD), and quasistatic finite-difference (QSFD) schemes. The FDTD and QSFD methods have been widely used to model/ analyze the induction of electric fields/ currents in voxel phantoms and MRI system components at high and low frequencies, respectively. The power of the optimized parallel computing architectures is illustrated by distinct, large-scale field calculation problems and shows significant computational advantages over conventional single processing platforms.

Funder

Australian Research Council

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3