Optimal Utilization of Ports’ Free-of-Charge Times in One Distribution Center and Multiple Ports Inventory Systems

Author:

Li Zhengyi12ORCID

Affiliation:

1. College of Economics and Management, Nanjing Forestry University, China

2. School of Economics and Management, Jiangsu University of Science and Technology, China

Abstract

In this paper, we consider a distribution system consisting of one distribution center (DC), a set of ports, and a set of retailers, in which the product is distributed to the retailers from the DC through the ports by the water transport, and study inventory management for the distribution system with considering the effect of the free storage periods provided by the ports. Inventory management for the distribution system is to determine the order intervals of the DC and the retailers while minimizing the inventory ordering and holding costs. Focusing on stationary and integer-ratio policies, we formulate this inventory management problem as an optimization problem with a convex objective function and a set of integer-ratio constraints and present O(NlogN) time algorithm to solve the relaxed problem (relaxing the integer-ratio constraints) to optimality, where N is the number of the retailers. We prove that the relaxed problem provides a lower bound on average cost for all the feasible policies (containing dynamic policies) for this inventory management problem. By using the optimal solution of the relaxed problem, we build a stationary integer-ratio policy (a power-of-two policy) for this inventory management problem and prove that the power-of-two policy can approximate the optimal inventory policy to 83% accuracy.

Funder

Ministry of Education of the People's Republic of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3