Establishment of a Swine Model for Validation of Perfusion Measurement by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

Author:

Sauerbrey Anika1ORCID,Hindel Stefan1,Maaß Marc2,Krüger Christine3,Wissmann Andreas3,Kramer Martin4,Nafz Benno5,Lüdemann Lutz1

Affiliation:

1. Radiation and Tumor Clinic, Essen University Hospital, Hufelandstraße. 55, 45147 Essen, Germany

2. Evangelisches Krankenhaus Wesel GmbH, Schermbecker Landstraße 88, 46485 Wesel, Germany

3. Central Animal Laboratory, Essen University Hospital, Hufelandstraße. 55, 45147 Essen, Germany

4. Department of Small Animal Surgery, Hospital of Veterinary Medicine, Justus Liebig University Giessen, Frankfurter Straße 94, 35392 Gießen, Germany

5. Charité Universiätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany

Abstract

The aim of the study was to develop a suitable animal model for validating dynamic contrast-enhanced magnetic resonance imaging perfusion measurements. A total of 8 pigs were investigated by DCE-MRI. Perfusion was determined on the hind leg musculature. An ultrasound flow probe placed around the femoral artery provided flow measurements independent of MRI and served as the standard of reference. Images were acquired on a 1.5 T MRI scanner using a 3D T1-weighted gradient-echo sequence. An arterial catheter for local injection was implanted in the femoral artery. Continuous injection of adenosine for vasodilation resulted in steady blood flow levels up to four times the baseline level. In this way, three different stable perfusion levels were induced and measured. A central venous catheter was used for injection of two different types of contrast media. A low-molecular weight contrast medium and a blood pool contrast medium were used. A total of 6 perfusion measurements were performed with a time interval of about 20–25 min without significant differences in the arterial input functions. In conclusion the accuracy of DCE-MRI-based perfusion measurement can be validated by comparison of the integrated perfusion signal of the hind leg musculature with the blood flow values measured with the ultrasound flow probe around the femoral artery.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3