Commodity Price Recognition and Simulation of Image Recognition Technology Based on the Nonlinear Dimensionality Reduction Method

Author:

Liu Yongbin1,Wang Jingjie1ORCID,Bai Wei1

Affiliation:

1. Huihua College of Hebei Normal University, Shijiazhuang, Hebei 050091, China

Abstract

Dimensionality reduction of images with high-dimensional nonlinear structure is the key to improving the recognition rate. Although some traditional algorithms have achieved some results in the process of dimensionality reduction, they also expose their respective defects. In order to achieve the ideal effect of high-dimensional nonlinear image recognition, based on the analysis of the traditional dimensionality reduction algorithm and refining its advantages, an image recognition technology based on the nonlinear dimensionality reduction method is proposed. As an effective nonlinear feature extraction method, the nonlinear dimensionality reduction method can find the nonlinear structure of datasets and maintain the intrinsic structure of data. Applying the nonlinear dimensionality reduction method to image recognition is to divide the input image into blocks, take it as a dataset in high-dimensional space, reduce the dimension of its structure, and obtain the low-dimensional expression vector of its eigenstructure so that the problem of image recognition can be carried out in a lower dimension. Thus, the computational complexity can be reduced, the recognition accuracy can be improved, and it is convenient for further processing such as image recognition and search. The defects of traditional algorithms are solved, and the commodity price recognition and simulation experiments are carried out, which verifies the feasibility of image recognition technology based on the nonlinear dimensionality reduction method in commodity price recognition.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

Reference21 articles.

1. Horizontal displacement monitoring method of deep foundation pit based on laser image recognition technology

2. Application of deep learning-based image recognition technology to asphalt–aggregate mixtures: Methodology

3. Crop classification based on nonlinear dimensionality reduction using time series remote sensing images;Y. Zhai;Transactions of the Chinese Society of Agricultural Engineering,2018

4. A dimensionality reduction method based on structured sparse representation for face recognition;C. Liu;Computing Reviews,2017

5. Nonlinear Dimensionality Reduction via Path-Based Isometric Mapping

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3