Protective Effects of Platycodin D3 on Airway Remodeling and Inflammation via Modulating MAPK/NF-κB Signaling Pathway in Asthma Mice

Author:

Peng Feng12,Xiao Fengchun3,Lin Long12ORCID

Affiliation:

1. Department of Pediatrics, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China

2. Department of Pediatrics, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou 310003, China

3. Department of Pathology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China

Abstract

Background. Asthma is a disease with airway hyperresponsive and airway inflammation. Platycodin D is a triterpenoid saponin extracted from Platycodon grandiflorus root, which has various pharmacological activities. The study mainly explored the effects of platycodin D3 (PD3) in airway remodeling and inflammation of asthma. Methods. The ovalbumin (OVA)-induced asthma mice were given PD3 (20 mg/kg, 40 mg/kg, and 80 mg/kg) in different groups. The asthma mice administrated with dexamethasone (DXM) were enrolled as the positive control group, and the normal control mice and asthma model mice separately received the same volume of saline. Mouse airway lung dynamic compliance (Cdyn) and total airway resistance (RL) were measured by the EMKA animal lung function analysis system. The inflammation factor levels were estimated by ELISA. Histopathological changes were tested by HE and PAS staining. The protein and phosphorylation levels of NF-κBp65, p38, ERK1/2, and JNK1/2 were detected by Western blot. Results. In asthmatic mice, PD3 enhanced the airway Cdyn and decreased RL to improve the airway hyperreactivity and alleviated the pathological injury of lung tissues. In addition, PD3 could reduce the infiltration of inflammatory cells in BALF and suppress the levels of eotaxin, IL-4, IL-5, IL-13, IFN-γ, and IgE. Furthermore, PD3 treatment inhibited the phosphorylation of NF-κBp65, p38, ERK1/2, and JNK1/2 proteins in asthma mice. Conclusion. PD3 treatment alleviated the airway remodeling and inflammation in asthmatic mice, which might be related to downregulating the phosphorylated proteins in the MAPK/NF-κB signaling pathway.

Funder

Medical Science and Technology Project of Zhejiang Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3