The Value of High-Resolution Ultrasound Combined with Shear-Wave Elastography under Artificial Intelligence Algorithm in Quantitative Evaluation of Skin Thickness in Localized Scleroderma

Author:

Jia Kun1ORCID,Li Huiying1ORCID,Wu Xiaojing1ORCID,Xu Caina1ORCID,Xue Hongyuan1ORCID

Affiliation:

1. Department of Ultrasound, Hebei General Hospital, Shijiazhuang, Hebei 050000, China

Abstract

The aim of this study was to explore the value of high-resolution ultrasound combined with shear-wave elastography (SWE) in measuring skin thickness in patients with localized scleroderma (LS). Fifty patients with LS diagnosed by pathology in the hospital were selected as the research object, with a total of 96 lesions. Healthy people (50 cases) in the same period were selected as the control group. The skin thickness of the abdomen, chest, and left finger of the two groups was compared. The traditional nonlocal means (NLM) algorithm was improved by changing the Euclidean distance and introducing a cosine function, which was applied to the ultrasonic imaging intelligent diagnosis of patients with localized scleroderma. SWE imaging was evaluated, and the results demonstrated that LS lesion edema stage accounted for 7.29%, hardening stage occupied 43.75%, and the proportion of atrophy stage reached 48.96%. When the size of shell was 1 mm, maximum elastic modulus (Emax) was 0.984, mean of elastic modulus (Emean) was 0.926, and electro-static discharge (Esd) was 0.965. When the size of shell was 2 mm, the elastic moduli around lesions were as follows: Emax was 0.998, Emean was 0.968, and Esd was 0.997. By comparing the skin thickness of the abdomen, chest, and left finger, it was found that there was a significant difference between the LS group and the control group ( P < 0.05 ). When the shell was 2 mm, the effect of sensitivity specificity on SWE imaging was better than that when the shell was 1 mm. In summary, the improved NLM algorithm showed excellent denoising effects on the ultrasonic images of LS patients. Besides, it could assist clinicians in ultrasonic imaging diagnosis for LS patients and effectively improve the diagnostic accuracy of diseases.

Funder

Medical Science Research Project Plan of Hebei Health Commission

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3