Electromagnetic Scattering of Electrically Large Ship above Sea Surface with SBR-SDFM Method

Author:

Guo Lixin1ORCID,Feng Tiantian1ORCID

Affiliation:

1. School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China

Abstract

Hybrid scheme combining shooting and bouncing ray with semi-deterministic facet model is proposed to analyze composite scattering from ship-ocean scene in this study. This model can deal with complex electromagnetic interaction between ship and sea surface. Thus, scattering properties of composite ship-ocean scenes with influence of various parameters (such as incident angle and wind speed) can be studied and analyzed efficiently. Studying such properties is of significance for target detection and high-resolution radar imaging in sea environments. Accuracy and performance of this method are validated and evaluated by comparing with multilevel fast multipole method of FEKO for electrically small objects. All simulation results indicate that the proposed method is suitable for providing preliminary radar cross section prediction of electrically large composite model.

Funder

National Science Foundation for Distinguished Young Scholars of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on SAR Image Simulation of Real Complex Ground Based on DEM;2023 International Applied Computational Electromagnetics Society Symposium (ACES-China);2023-08-15

2. Simulation and Analysis of Transient Scattering Echoes of Target Above Sea-Land Junction Area Based on TDSBR Method;2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT);2023-05-14

3. Fast RFGG-FG-FFT/IKA for Scattering From Multiple Targets Above a Rough Surface;IEEE Antennas and Wireless Propagation Letters;2021-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3