Goaf Site Stability Detection in the Overlap Area of Coal Mining Subsidence and Urban Construction

Author:

Dai Guangli1ORCID,Li Hongjia2ORCID,Liu Chao1ORCID,Li Huaizhan2ORCID,Chang Youwei1ORCID,Chen Yu2ORCID,Gao Yandong2ORCID,Yuan Yafei2ORCID,Huo Wenqi2ORCID

Affiliation:

1. Fifth Geological Brigade, Geology and Mineral Resources Bureau of Jiangsu, Xuzhou 221116, China

2. School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The contradiction between coal mining and urban construction in coal resource-based cities is prominent, which greatly limits the sustainable development of these cities. Pan’an New City is a key mining-induced subsidence area in Xuzhou City, which presents significant challenges to the construction of the new city. Therefore, in order to ensure the safe construction of Pan’an New City, the residual deformation and stability of the goaf sites must be monitored and evaluated. Under such background, based on the measured leveling data of the mining-induced surface deformation in a coal mine near Pan’an New City, this paper first analyzed the accuracy of InSAR monitoring of surface deformation in coal mining subsidence area by SBAS-InSAR technology. Then, the SBAS-InSAR technology was used to monitor the surface subsidence rate and cumulative subsidence in the coal mining subsidence area of Pan’an New City, based on the 29 scene SAR data during Dec. 2020 and Jan. 2022. The results showed that the goaf site in the north and northwest of Pan’an New City is unstable, while the other areas are stable. Finally, according to the monitoring results, the suggestions have been put forward for the construction of Pan’an New Town on the goaf site. The research results have important theoretical and practical significance for the reuse of goaf sites in Pan’an New City and similar areas in Xuzhou.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3