An Efficient and Differential Privacy-Based Scheme for Aggregating Mobility Datasets

Author:

Yang Qing1ORCID,Ji Fujun1ORCID,Liu Fei1ORCID

Affiliation:

1. School of Management and Engineering, Capital University of Economics and Business, Beijing, China

Abstract

Mobile smart devices, such as mobile phones, wearable devices, and in-vehicle navigation systems, bring us convenience and have become necessities in modern daily life. The built-in global positioning system (GPS) of these mobile devices collects the users’ mobility data to support path planning, navigation and other location-related applications, which also inevitably causes privacy issues. Previous research has shown that employing count-min sketch (CMS) to aggregate mobility datasets is a valid privacy-preserving method for resisting the reconstruction attack on population distributions. However, as the utility/accessibility of the protected datasets is excessively correlated with the size of CMS, decreasing the data transmission cost has become an unsolved issue of that approach. In this paper, we propose an efficient scheme with differential privacy to protect mobility datasets, which releases the privacy-preserving population distributions and achieves better utility as well as a much smaller data transmission cost compared to the CMS-based method. Our proposed scheme is comprised of two collaborative components, global sketch and temporal sketch. The global sketch is responsible for aggregating the raw mobility data and decreasing the data transmission cost, while the temporal sketch is in charge of guaranteeing the utility of the population distributions aggregated by the global sketch. Besides, to enhance the privacy preservation, we employ the Laplace mechanism to make the transmitted data satisfy ϵ-differential privacy. Through our analysis and empirical experiments, compared to the other three state-of-the-art privacy-preserving methods on mobility datasets, our scheme could preserve the privacy of the mobility datasets with much less data transmission cost under the same utility loss.

Funder

Capital University of Economics and Business

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3