Antioxidant Properties of Lapachol and Its Derivatives and Their Ability to Chelate Iron (II) Cation: DFT and QTAIM Studies

Author:

Pajoudoro Djafarou Ngouh1,Lissouck Daniel2ORCID,Ateba Amana Baruch1ORCID,Mfomo Joseph Zobo3,Abdallah A. E. B.2,Toze Alfred Aristide Flavien1,Mama Désiré Bikele1ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science, University of Douala, P. O. Box 24157, Douala, Cameroon

2. Department of Physics, Faculty of Science, University of Douala, P. O. Box 24157, Douala, Cameroon

3. Department of Forestry and Wood Engineering, Advances Teachers Training College for Technical Education, University of Douala, P. O. Box 24157, Douala, Cameroon

Abstract

The elucidation of the complexation of lapachol and its derivatives to Fe2+ cation has been done using the density functional theory (DFT). This complexation has been limited to bidentate and tridentate to Fe2+ cation. Geometry optimizations have been implemented in gas and solution phase (water, acetonitrile, chlorobenzene, benzene, and toluene) for ligands at B3LYP/6-311++G (d,p) level of theory using B3LYP/6-31+G(d,p) optimized data as starting point. But, the geometrical optimizations in solution phase of the 22 complexes analyzed of lapachol and its derivatives to Fe2+ cation were restricted to acetonitrile and benzene. The complexation energy and the metal ion affinity (MIA) have also been calculated using the B3LYP method. The results obtained indicated a proportionality between the MIA values and the retained charge on Fe2+ cation for k2-(O1,O2) modes. But, an inverse proportionality has been yielded between these two parameters for k3-(O2, C=C) tridentate modes. For k3-(O3,C=C) tridentate mode coordination, the higher stability has been obtained. In this latter tridentate coordination in gas phase, the topological analysis of complexes exhibits the fact that the electron density is concentrated between the O3 oxygen atom of the ligand attached to Fe2+ and this metal cation. Moreover, the hydrogen bond strength calculated for isolated ligands (situated between 23.92 and 30.15 kJ/mol) is in the range of normal HBs. Collectively, all the complexation processes have shown to be highly exothermic. Our results have also shown that the electron extraction from Fe2+...Lai complexes is more difficult compared to that from free ligands.

Funder

Equipex: Programme d’Investissements d’Avenir

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3