Iterative Variable Gene Discovery from Whole Genome Sequencing with a Bootstrapped Multiresolution Algorithm

Author:

Olivieri David N.1ORCID,Gambón-Deza Francisco2

Affiliation:

1. Department of Computer Science, University of Vigo, Ourense 32004, Spain

2. Department of Immunology, Hospital of Meixoeiro, Vigo, Spain

Abstract

In jawed vertebrates, variable (V) genes code for antigen-binding regions of B and T lymphocyte receptors, which generate a specific response to foreign pathogens. Obtaining the detailed repertoire of these genes across the jawed vertebrate kingdom would help to understand their evolution and function. However, annotations of V-genes are known for only a few model species since their extraction is not amenable to standard gene finding algorithms. Also, the more distant evolution of a taxon is from such model species, and there is less homology between their V-gene sequences. Here, we present an iterative supervised machine learning algorithm that begins by training a small set of known and verified V-gene sequences. The algorithm successively discovers homologous unaligned V-exons from a larger set of whole genome shotgun (WGS) datasets from many taxa. Upon each iteration, newly uncovered V-genes are added to the training set for the next predictions. This iterative learning/discovery process terminates when the number of new sequences discovered is negligible. This process is akin to “online” or reinforcement learning and is proven to be useful for discovering homologous V-genes from successively more distant taxa from the original set. Results are demonstrated for 14 primate WGS datasets and validated against Ensembl annotations. This algorithm is implemented in the Python programming language and is freely available at http://vgenerepertoire.org.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distinct evolution at TCRα and TCRβ loci in the genusMus;2024-09-07

2. Conceptual Modeling of the V Gene Annotation Process in Antibodies;2023 11th International Conference in Software Engineering Research and Innovation (CONISOFT);2023-11-06

3. MHC class I and II genes in Serpentes;2020-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3