Application of an Improved TF-IDF Method in Literary Text Classification

Author:

Xiang Lin1ORCID

Affiliation:

1. Public Basic Course Teaching Department, Hubei University of Police, Wuhan 430030, China

Abstract

Literature is extremely important in the advancement of human civilization. Every day, many literary texts of various genres are produced, dating back to ancient times. An urgent concern for managers in the current literary activity is how to classify and save the expanding mass of literary text data for easy access by readers. In the realm of text classification, the TF-IDF algorithm is a widely used classification algorithm. However, there are significant issues with utilizing this approach, including a lack of distribution information inside categories, a lack of distribution information between categories, and an inability to adjust to skewed datasets. It is possible to improve classification accuracy by using the TF-IDF algorithm in this paper’s application situation by exploiting the association between feature words and the quantity of texts in which they appear, while ignoring the variation in feature word distribution across categories. With the purpose of classifying the literary texts in this study, this work proposes an improved IDF method for the problem of feature words appearing several times and having diverse meanings in different fields. The meanings of feature words in distinct domains are separated to increase the trust in the TF-IDF algorithm’s output. Using the improved TF-IDF method suggested in this research with the random forest (RF) classifier, the experimental results show that the classifier has a good classification impact, which can meet the actual work needs, based on comparative experiments on feature dimension selection, feature selection algorithm, feature weight algorithm, and classifier. It has a fair amount of historical significance.

Funder

Hubei University of Police

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3