Short-Term Demand Forecast of E-Commerce Platform Based on ConvLSTM Network

Author:

Li Zan1ORCID,Zhang Nairen2

Affiliation:

1. College of Business, Zhengzhou College of Finance and Economics, Zhengzhou 450000, China

2. Department of Decision Consultation, Henan Administration Institute, Zhengzhou 451000, China

Abstract

Based on real sales data, this article constructed LGBM and LSTM sales prediction models to compare and verify the performance of the proposed models. In this article, we forecast the product sales of stores in the future T + 3 days and use MAPE as the evaluation index. The experiment shows that the product sales prediction model based on the convolutional LSTM (ConvLSTM) network has better prediction accuracy. From a store point of view, ConvLSTM prediction model MAPE was 0.42 lower than the long short-term memory (LSTM) network and 0.68 lower than LGBM. From the perspective of commodity categories, different commodity categories are suitable for different forecasting methods. Some categories are suitable for regression forecasting, while others are suitable for time-series forecasting. Among the categories suitable for time-series forecasting, the ConvLSTM model performs the best.

Funder

Chinese National Funding of Social Sciences

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3