Semantic Extraction of Basketball Game Video Combining Domain Knowledge and In-Depth Features

Author:

Du Yufeng1,Zhao Quan2ORCID,Lu Xiaochun1

Affiliation:

1. Ministry of Sports, Xi’an Academy of Fine Arts, Xi’an 710065, Shaanxi, China

2. School of Sciences, Xi’an Technological University, Xi’an 710021, Shaanxi, China

Abstract

The team sports game video features complex background, fast target movement, and mutual occlusion between targets, which poses great challenges to multiperson collaborative video analysis. This paper proposes a video semantic extraction method that integrates domain knowledge and in-depth features, which can be applied to the analysis of a multiperson collaborative basketball game video, where the semantic event is modeled as an adversarial relationship between two teams of players. We first designed a scheme that combines a dual-stream network and learnable spatiotemporal feature aggregation, which can be used for end-to-end training of video semantic extraction to bridge the gap between low-level features and high-level semantic events. Then, an algorithm based on the knowledge from different video sources is proposed to extract the action semantics. The algorithm gathers local convolutional features in the entire space-time range, which can be used to track the ball/shooter/hoop to realize automatic semantic extraction of basketball game videos. Experiments show that the scheme proposed in this paper can effectively identify the four categories of short, medium, long, free throw, and scoring events and the semantics of athletes’ actions based on the video footage of the basketball game.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel multi-modal feature extraction system for news video;International Conference on Automation Control, Algorithm, and Intelligent Bionics (ACAIB 2023);2023-08-10

2. Deep Learning Algorithm-Based Target Detection and Fine Localization of Technical Features in Basketball;Computational Intelligence and Neuroscience;2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3