Impact of Typhoons of Different Intensities on Short-Term Precipitation in the Middle and Lower Reaches of the Yangtze River in Summer

Author:

Zhang Zhongwu1ORCID

Affiliation:

1. School of Geographical Sciences, Shanxi Normal University, Taiyuan, China

Abstract

According to China’s reanalyzed meteorological dataset (CN05.1), a 6-h track intensity typhoon meteorological dataset in the Western Pacific, three types of short-term precipitation are described to study the impact of typhoons on summer rainfall of different intensities in the middle and lower reaches of the Yangtze River: short-term extreme precipitation (95% quantile), short-term heavy precipitation (75% quantile), and normal precipitation (below the lower limit of the 75% quantile threshold). The results show that the amount of short-term extreme precipitation is 1.8 and 3.7 times that of normal precipitation and short-term heavy precipitation, respectively. Considerable interannual and interdecadal fluctuations in the proportion of short-term heavy precipitation and extreme precipitation during summer are affected by typhoons, with a wide range of changes occurring between 1980 and 2000. The areas with high amounts of short-term heavy precipitation and extreme precipitation are distributed mostly in the middle and southern parts of the middle and lower reaches of the Yangtze River, whereas areas with a high amount of normal precipitation are distributed mostly in the southeastern parts of the river. The spatial distribution of the three intensities of rainfall affected by typhoons is consistent, with a gradual decrease from southeast to northwest; in addition, the spatial distribution of the proportion of total summer rainfall has similar characteristics. The three intensities of precipitation are affected by the spatial distribution of the typhoon path frequency, and the distribution of the high-value areas is essentially the same as that of precipitation. This indicates that most of the typhoons that affect summer precipitation pass through the middle and lower reaches of the Yangtze River.

Funder

Department of Education, Shanxi Province

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3