Soft Sensor Development Based on Quality-Relevant Slow Feature Analysis and Bayesian Regression with Application to Propylene Polymerization

Author:

Zhang Miao1ORCID,Zhou Le1,Jie Jing1ORCID,Wu Xiaoli1

Affiliation:

1. School of Automation and Electrical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China

Abstract

Data-driven soft sensors are widely used to predict quality indices in propylene polymerization processes to improve the availability of measurements and efficiency. To deal with the nonlinearity and dynamics in propylene polymerization processes, a novel soft sensor based on quality-relevant slow feature analysis and Bayesian regression is proposed in this paper. The proposed method can handle the dynamics of the process better by extracting quality-relevant slow features, which present both the slowly varying characteristic and the correlations with quality indices. Meanwhile, a Bayesian inference model is developed to predict the quality indices, which takes advantages of a probability framework with iterative maximum likelihood techniques for parameter estimation and a sparse constraint for avoiding overfitting. Finally, a case study is conducted with data sampled from a practical industrial propylene polymerization process to demonstrate the effectiveness and superiority of the proposed method.

Funder

Zhejiang Public Welfare Technology Application Research Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3