Affiliation:
1. School of Automation and Electrical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
Abstract
Data-driven soft sensors are widely used to predict quality indices in propylene polymerization processes to improve the availability of measurements and efficiency. To deal with the nonlinearity and dynamics in propylene polymerization processes, a novel soft sensor based on quality-relevant slow feature analysis and Bayesian regression is proposed in this paper. The proposed method can handle the dynamics of the process better by extracting quality-relevant slow features, which present both the slowly varying characteristic and the correlations with quality indices. Meanwhile, a Bayesian inference model is developed to predict the quality indices, which takes advantages of a probability framework with iterative maximum likelihood techniques for parameter estimation and a sparse constraint for avoiding overfitting. Finally, a case study is conducted with data sampled from a practical industrial propylene polymerization process to demonstrate the effectiveness and superiority of the proposed method.
Funder
Zhejiang Public Welfare Technology Application Research Project
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献