Influence of miR-1 on Nerve Cell Apoptosis in Rats with Cerebral Stroke via Regulating ERK Signaling Pathway

Author:

Jiang Yuanding1,Wang Tao1,He Jian1,Liao Quan1,Wang Jingjing2ORCID

Affiliation:

1. Department of Neurosurgery, The Second Affiliated Hospital of South China University, Hengyang, 421001 Hunan Province, China

2. Department of Hemodialyses Room, The Second Affiliated Hospital of South China University, Hengyang, 421001 Hunan Province, China

Abstract

To explore the effect of miR-1 on neuronal apoptosis in rats with stroke through the ERK signaling pathway. Methods. Forty male rats (180-220 g) were selected and randomly divided into the sham, model, miR-1 inhibitor, and miR-1 mimic groups (10 rats per group) by average body weight. Cerebral ischemia/reperfusion (I/R) models were established using a modified middle cerebral artery wire thrombosis (MCAO) method in rats in the model group, miR-1 inhibitor group, and miR-1 mimic group. After the successful model establishment, the miR-1inhibitor group and miR-1 mimic group were intravenously injected with miR-1 inhibitor and miR-1 mimic, respectively, once a day for 3 days. The sham and model groups were given the same dose of normal saline. TTC staining was applied to detect the cerebral infarct size and calculate the infarct volume. Histopathological changes in the hippocampus of rat brains were observed by HE staining. Flow cytometry was used to detect neuronal apoptosis in rat brains. The mRNA expressions of miR-1, ERK1/2, Bcl-2, and Bax in rat brain tissues were determined by QRT PCR, and the protein levels of ERK1/2, Bcl-2, Bax, and caspase-3 were determined by Western blot analysis. Results. Compared with the sham group, the neurological impairment score, cerebral infarct size, and volume of rats in the model group were significantly increased ( p < 0.05 ). Compared with the model group, the neurological impairment score, cerebral infarct size, and volume were significantly increased in the miR-1 mimic group and significantly decreased in the miR-1 inhibitor group ( p < 0.05 ). In the model group, the hippocampal tissue of rats had malaligned cells, neuron cell atrophy became smaller, the intercellular spaces became larger, and vacuoles appeared. Compared with the model group, the miR-1 inhibitor group could effectively alleviate the pathological changes in the hippocampus, and the miR-1 mimic group could significantly add to the pathological changes in the rat hippocampus. Compared with the sham group, the mRNA expression of miR-1 and Bax in the brain of model rats increased significantly ( p < 0.05 ), and the mRNA expression of ERK1/2 decreased significantly; Compared with the model group, the miR-1 and Bax mRNA expressions in the brain tissues of rats in the miR-1 inhibitor group were significantly decreased, the ERK1/2 and bcl-2 mRNA expressions were significantly increased, and the miR-1 and Bax mRNA expressions in the brain tissues of rats in the miR-1 inhibitor group were significantly decreased, and the Bcl-2 mRNA expression was significantly increased ( p < 0.05 ). Compared with the sham group, neuronal apoptosis was increased in the brain tissues of rats in the model group and miR-1 mimic group. Compared with the model group, neuronal apoptosis was decreased in the brain tissues of rats in the miR-1 inhibitor group. Compared with the sham group, the ERK1/2 proteins in the model group were significantly decreased, the Bcl-2, Bax, and caspase-3 proteins were significantly increased, and the ERK1/2, Bcl-2, Bax, and caspase-3 proteins in the miR-1 inhibitor group and miR-1 mimic group were significantly increased. Compared with the model group, the protein levels of ERK1/2 and Bcl-2 in the miR-1 inhibitor group were significantly increased, the proteins of Bax and caspase-3 were significantly decreased, and the protein levels of ERK1/2 and Bcl-2 in the miR-1 inhibitor group were significantly increased ( p < 0.05 ). Conclusions. miR-1 can interfere with neuronal apoptosis in rats with stroke through the ERK signaling pathway.

Funder

Hengyang science and technology project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3