Research on Ship Meteorological Route Based on A-Star Algorithm

Author:

Chen Ge1ORCID,Wu Tao12ORCID,Zhou Zheng3

Affiliation:

1. Chengdu University of Information Technology, School of Computer Science, Chengdu 610225, China

2. Sichuan Numerical Weather Computing Engine Research Center, Chengdu 610225, China

3. Ninecosmos Science and Technology Ltd., Wuxi 21400, China

Abstract

Ship meteorological navigation is based on hydrometeorological data of a certain time scale, considering the ship’s motion characteristics and its own characteristics. First, we provide the best route for the ship and then use real-time local weather information to correct the route during the ship’s navigation. It can also be expressed as follows: it is based on the hydrological and meteorological conditions of the ship during its voyage and the seakeeping characteristics of the ship itself, and the route planning method is used to select the best route for the ship. The best route is a balance between economy and safety, that is, based on ensuring the safety of ship navigation, the route that meets the shortest navigation time, the least fuel consumption, or the least navigation risk is obtained. Weather navigation includes the optimization of the initial route before sailing and the correction of the route after sailing. As there may be errors in hydrometeorological forecasts, especially in the accuracy and real-time performance of medium and long-term forecasts, the optimal initial route may not achieve the best results. Therefore, after the ship sails, it is necessary to adjust and correct the preferred initial route based on the meteorological information detected by the sensors or the continuously updated hydrometeorological forecast data to ensure the best effect of meteorological navigation. This paper proposes a weather route planning method based on the improved A-star algorithm. The convex shape of the concave obstacle and the expansion of the obstacle are carried out; according to the position of the target point relative to the starting point, the search direction of the A-star algorithm at each node is restricted, and an improved A-star algorithm is proposed. The simulation of global weather route planning shows that the improved A-star algorithm can not only find the optimal path but also effectively reduce the number of nodes that the algorithm needs to search during operation. Compared with the classic algorithm, the improved algorithm reduces the number of node searches by 29.25%.

Funder

National Key Research

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference19 articles.

1. Introduction to ship weather navigation;Yanglianghua;Meteorological,1982

2. High resolution maps from angle sonar;H. P. Moravec

3. Position referencing and consistent world modeling for mobile robots;R. Chatila

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3