Improving the Prognosis of Colon Cancer through Knowledge-Based Clinical-Molecular Integrated Analysis

Author:

Tong Danyang1ORCID,Tian Yu1ORCID,Ye Qiancheng1ORCID,Li Jun2,Ding Kefeng2ORCID,Li Jingsong13ORCID

Affiliation:

1. Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, No. 38 Zheda Road, Hangzhou, 310027 Zhejiang Province, China

2. Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 31009 Zhejiang Province, China

3. Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China

Abstract

Background. Colon cancer has high morbidity and mortality rates among cancers. Existing clinical staging systems cannot accurately assess the prognostic risk of colon cancer patients. This study was aimed at improving the prognostic performance of the colon cancer clinical staging system through knowledge-based clinical-molecular integrated analysis. Methods. 374 samples from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset were used as the discovery set. 98 samples from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset were used as the validation set. After converting gene expression data into pathway dysregulation scores (PDSs), the random survival forest and Cox model were used to identify the best prognostic supplementary factors. The corresponding clinical-molecular integrated prognostic model was built, and the improvement of prognostic performance was assessed by comparing with the clinical prognostic model. Results. The PDS of 14 pathways played important roles in prognostic prediction together with clinical prognostic factors through the random survival forest. Further screening with the Cox model revealed that the PDS of the pathway hsa00532 was the best clinical prognostic supplementary factor. The integrated prognostic model constructed with clinical factors and the identified molecular factor was superior to the clinical prognostic model in discriminative performance. Kaplan-Meier (KM) curves of patients grouped by PDS suggested that patients with a higher PDS had a poorer prognosis, and stage II patients could be distinctly distinguished. Conclusions. Based on the knowledge-based clinical-molecular integrated analysis, a clinical-molecular integrated prognostic model and corresponding nomogram for colon cancer overall survival prognosis was built, which showed better prognostic performance than the clinical prognostic model. The PDS of the pathway hsa00532 is a considerable clinical prognostic supplementary factor for colon cancer and may represent a potential prognostic marker for stage II colon cancer. The PDS calculation involves only 16 genes, which supports its potential for clinical application.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3