Probabilistic Prediction of Unsafe Event in Air Traffic Control Department Based on the Improved Backpropagation Neural Network

Author:

Liao Yong1ORCID,Miao Zhiyang1ORCID,Yang Changqi1ORCID

Affiliation:

1. College of Air Traffic Management, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China

Abstract

Air traffic control is an important tool to ensure the safety of civil aviation. For the departments that do the work of air traffic control, reducing the percentage of unsafe event is the core task of safety management. If the relationship between the percentage of unsafe event and their influencing factors can be effectively clarified, then the probability of unsafe event in some control department can be predicted. So, it is of great importance to improve the level of safety management. To quantitatively estimate the probability of unsafe event, a three-layer BP neural network model is introduced in this paper. First, a probabilistic representation of unsafe event related to air traffic control department is made, and then, the probability of different classes of unsafe events and safe events is taken as the outputs of the BP neural network, the factors influencing occurrence of unsafe event connected with air traffic control is taken as inputs, and the sigmoid function is chosen as activation function for the hidden layer. Based on the error function of neural network, it is proved that the general BP neural network has two drawbacks when used for the training of small probability events, which are as follows: the pattern does not ensure that the sum of probability of all events is equal to one and the relative error between the actual outputs and desired outputs is very large after the training of neural network. The reason proved in this paper is that the occurrence rate of the unsafe event is much smaller than that of the safe event, resulting in each weight in the hide layer being subjected to the desired outputs of the safe event when using the gradient descent method for network training. To address this issue, a new mapping method is put forward to reduce the large difference of the desired outputs between the safe event and unsafe event. It is theoretically proved that the mapping method proposed in this paper can not only improve the training accuracy but also ensure that the sum of probability is equal to one. Finally, a numeric example is given to demonstrate that the method proposed in this paper is effective and feasible.

Funder

Department of Science and Technology of Sichuan Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference54 articles.

1. Population-development oriented comprehensive modern transport system in China;P. Zhao;Acta Geographica Sinica,2020

2. Evaluation on integrated transportation capacity and coordination in the urban agglomeration;C. Fu;Journal of Transportation Systems Engineering and Information Technology,2017

3. Study on the optimization of comprehensive transportation system in China under the perspective of total factor efficiency;M. Shang

4. Underground Space Development in Comprehensive Transport Hubs in China

5. Thoughts on China's comprehensive transportation system under financial crisis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3