Using DTMB-Based Passive Radar for Small Unmanned Aerial Vehicle Detection

Author:

Zhu Huijie12ORCID,Wang Lijun12,Liu Mingqian3

Affiliation:

1. Science and Technology on Communication Information Security Control Laboratory, Jiaxing 314033, China

2. The 36th Research Institute of China Electronics Technology Group Corporation, Jiaxing 314033, China

3. State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China

Abstract

There is inevitable polarization angle deviation between the target echo signal and the direct path signal of illuminator of opportunity (IO) in passive radar. In order to investigate the potential performance loss in target detection induced by the random deviation, small unmanned aerial vehicle (UAV) detection experiments with digital television terrestrial multimedia broadcasting- (DTMB-) based passive radar are conducted in this paper. Experimental results show that the polarization angles of the clutter signal and target echo signal are inconsistent. When the polarization diversity technology is used to suppress the clutter signal, the processing performance of the target echo signal may be reduced. On the premise that clutter is effectively suppressed by the processing algorithm, polarization synthesis can maximize the target echo signal processing gain. The effectiveness of the target localization algorithm combining time difference of arrival (TDOA) and direction of arrival (DOA) is also verified with polarization diversity reception in this paper.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultra-Wideband Spectrum Monitoring Using Software Defined Radio;2022 IEEE 22nd International Conference on Communication Technology (ICCT);2022-11-11

2. A USRP-Based Testbed for Dual Mode Passive Radar;2021 IEEE 21st International Conference on Communication Technology (ICCT);2021-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3