Deep Learning-Based Image Processing for Cotton Leaf Disease and Pest Diagnosis

Author:

M. Azath1ORCID,Zekiwos Melese2,Bruck Abey1

Affiliation:

1. Faculty of Computing and Software Engineering, Arba Minch University, Arba Minch, Ethiopia

2. School of Computing & Informatics, Wachemo University, Shewa, Ethiopia

Abstract

Cotton is one of the economically significant agricultural products in Ethiopia, but it is exposed to different constraints in the leaf area. Mostly, these constraints are identified as diseases and pests that are hard to detect with bare eyes. This study focused to develop a model to boost the detection of cotton leaf disease and pests using the deep learning technique, CNN. To do so, the researchers have used common cotton leaf disease and pests such as bacterial blight, spider mite, and leaf miner. K-fold cross-validation strategy was worn to dataset splitting and boosted generalization of the CNN model. For this research, nearly 2400 specimens (600 images in each class) were accessed for training purposes. This developed model is implemented using python version 3.7.3 and the model is equipped on the deep learning package called Keras, TensorFlow backed, and Jupyter which are used as the developmental environment. This model achieved an accuracy of 96.4% for identifying classes of leaf disease and pests in cotton plants. This revealed the feasibility of its usage in real-time applications and the potential need for IT-based solutions to support traditional or manual disease and pest’s identification.

Funder

Ministerstwo Nauki i Szkolnictwa Wyzszego

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Reference20 articles.

1. Classification of cotton leaf spot disease using support vector machine;P. Sonal;International Journal of Engineering Research and Applications,2014

2. The cotton supply chain in Ethiopia;O.-I. e. Inga Hilbert;Freiburg,2018

3. A survey on detection and classification of cotton leaf disease;B. S. Prajapati

4. Design Science in IS Research;A. R. Hevner;Management Information,2004

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3