Improvement and Optimization of Feature Selection Algorithm in Swarm Intelligence Algorithm Based on Complexity

Author:

Chen Bingsheng1ORCID,Chen Huijie1,Li Mengshan1

Affiliation:

1. College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, Jiangxi, China

Abstract

The swarm intelligence algorithm simulates the behavior of animal populations in nature and is a new type of intelligent solution that is different from traditional artificial intelligence. Feature selection is a very common data dimensionality reduction method, which requires us to select the feature subset with the best evaluation criteria from the original feature set. Feature selection, as an effective data processing method, has become a hot research topic in the fields of machine learning, pattern recognition, and data mining and has received extensive attention and attention. In order to verify the improvement effect of the feature selection algorithm based on the swarm intelligence algorithm on the data, this paper conducts experiments on six classes in the city’s first middle school with similar conditions. First, count the current situation of the students in the class, then divide them into classes, use different algorithms to teach them, and count the changes of the students after a period of teaching. The experiment found that the performance of students under the feature selection algorithm is about 30% higher than other teaching methods, and the awareness of cooperation between students reaches 0.8. It solves the contradiction between popularization and improvement and solves the problems of polarization and transformation of underachievers. The individuality of the algorithm has been fully utilized and developed. The test results show that the improved algorithm has faster convergence speed and higher solution accuracy, and the feature selection algorithm based on swarm intelligence algorithm can effectively improve the efficiency of the algorithm.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3