Degradation of Antibiotics in Wastewater during Sonolysis, Ozonation, and Their Simultaneous Application: Operating Conditions Effects and Processes Evaluation

Author:

Naddeo Vincenzo1ORCID,Ricco Daniele1,Scannapieco Davide1,Belgiorno Vincenzo1

Affiliation:

1. Department of Civil Engineering, University of Salerno, V. Ponte don Melillo, 84084 Fisciano, Italy

Abstract

Pharmaceutical drugs frequently found in treated effluents, lakes and rivers, can exhibit adverse effects on aquatic organisms. The present study focuses on the application of advanced oxidation processes as ozonation (O3), sonolysis (US), and their combined application (US+O3) for the degradation of diclofenac in wastewater. Under the applied conditions, all three systems proved to be able to induce diclofenac oxidation, leading to 22% of mineralization for O3and 36% for US process after 40 min of treatment. The synergy observed in the combined schemes, mainly due to the effects of US in enhancing the O3decomposition, led to a higher mineralization (about 40%) for 40-minute treatment and to a significantly higher mineralization level for shorter treatment duration.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3