A Sentiment Analysis Method for Teaching Evaluation Texts Using Attention Mechanism Combined with CNN-BLSTM Model

Author:

Peng Hong1ORCID,Zhang Zhenwei1ORCID,Liu Hua1ORCID

Affiliation:

1. School of Computing, Huanggang Normal University, Huanggang, Hubei 438000, China

Abstract

In view of the problems that most existing emotion analysis models ignore the relationship between emotions and are not suitable for students, an emotion analysis model of teaching evaluation text based on deep learning is proposed. Firstly, combining the advantages of CNN extracting phrase features and BLSTM extracting sequence features, the CNN-BLSTM model is constructed to effectively enhance the extraction ability of text information. Then, the attention mechanism is used to adaptively perceive the context information, extract the text features that affect students’ emotion, and construct the CNN-BLSTM-AT model. Finally, the CNN-BLSTM-AT model is used to analyze the students’ emotion types in the dataset, and the mini-batch gradient descent method is used for model training. The experiment uses the weibo_senti_100k dataset to demonstrate the performance of the proposed model. The results show that adding the attention mechanism can improve the accuracy of the model by about 0.23. Also, its recall rate is not less than 0.57 and the minimum value of F1 is 0.748, which is better than other comparison models, thus demonstrating the effectiveness of the proposed model.

Funder

Huanggang Normal University High-Level Cultivation Projects

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference25 articles.

1. NLWSNet: a weakly supervised network for visual sentiment analysis in mislabeled web images

2. Topic Sentiment Analysis in Online Learning Community from College Students

3. Transnational sentiment analysis of Social Media for CSA Social Enterprise Innovation-from the Perspective of Sharing Economy and collaborative consumption;W. F. Dong;Journal of Information Management,2019

4. Sentiment Analysis of the Academic Services of ESSU Salcedo Campus using Plutchik Model And Latent Dirichlet Allocation Algorithm

5. Sentiment analysis of product reviews in the Absence of Labelled data using supervised learning Approaches;W. Muhammad;Malaysian Journal of Computer Science,2020

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3