Effect of Bedding Angle and Confining Pressure on the Brittleness of Geomaterials: A Case Study on Slate

Author:

Hao Xianjie12345ORCID,Xu Quansheng5,Yang Dequan5,Wang Shaohua5,Wei Yingnan5

Affiliation:

1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China

2. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 100011, China

3. Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education (Anhui University of Science and Technology), Huainan 232001, China

4. China University of Mining and Technology (Beijing), Beijing Laboratory of Companion Energy Accurate Mining, Beijing 100083, China

5. School of Energy and Mining, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

Brittleness is one of the most significant properties of geomaterials. However, very few studies have been conducted on factors influencing the rock brittleness indices. In this paper, conventional triaxial compression tests were carried out to investigate the effects of confining pressure and bedding angle on the brittleness of slate. From the perspective of energy, brittleness is an index that could reflect the release rate of energy that accumulated in the slate under the effect of external energy after reaching peak strength. Therefore, a new brittleness index of slate based on postpeak energy release is proposed herein. The applicability of this index is illustrated by comparing with other five existing brittleness indices. The following results can be obtained. (1) The confining pressure exerts a great influence on the brittleness of slate. With the increase of confining pressure, the brittleness of slate decreases significantly. The dispersion of brittleness values of slate declines with increasing confining pressure. (2) There is a parabolic relationship between slate brittleness and bedding angle. As bedding angle increases, the brittleness is intensified and reaches its maximum at a bedding angle of about 45° and then decreases gradually. (3) In contrast to the previous indices, the brittleness index proposed in this paper can describe the whole process of the postpeak stage through an index of the energy release, which makes this measure more suitable for rock that has the characteristics of step-drop or bench-drop at the postpeak stage.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3