Affiliation:
1. School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China
2. Shanghai Business School, Shanghai 200235, China
Abstract
Interest rate is an important macrofactor that affects asset prices in the financial market. As the interest rate in the real market has the property of fluctuation, it might lead to a great bias in asset allocation if we only view the interest rate as a constant in portfolio management. In this paper, we mainly study an optimal investment strategy problem by employing a constant elasticity of variance (CEV) process and stochastic interest rate. The assets of investment for individuals are supposed to be composed of one risk-free asset and one risky asset. The interest rate for risk-free asset is assumed to follow the Cox–Ingersoll–Ross (CIR) process, and the price of risky asset follows the CEV process. The objective is to maximize the expected utility of terminal wealth. By applying the dual method, Legendre transformation, and asymptotic expansion approach, we successfully obtain an asymptotic solution for the optimal investment strategy under constant absolute risk aversion (CARA) utility function. In the end, some numerical examples are provided to support our theoretical results and to illustrate the effect of stochastic interest rates and some other model parameters on the optimal investment strategy.
Funder
Chongqing Municipal Education Commission
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献