Effect-Size Estimation Using Semiparametric Hierarchical Mixture Models in Disease-Association Studies with Neuroimaging Data

Author:

Emoto Ryo1ORCID,Kawaguchi Atsushi2,Takahashi Kunihiko3ORCID,Matsui Shigeyuki14

Affiliation:

1. Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya 466-0003, Japan

2. Faculty of Medicine, Saga University, Saga 849-8501, Japan

3. Medical and Dental Data Science Center, Tokyo Medical and Dental University, Tokyo 101-0062, Japan

4. Department of Data Science, The Institute of Statistical Mathematics, Tachikawa 190-8562, Japan

Abstract

In disease-association studies using neuroimaging data, evaluating the biological or clinical significance of individual associations requires not only detection of disease-associated areas of the brain but also estimation of the magnitudes of the associations or effect sizes for individual brain areas. In this paper, we propose a model-based framework for voxel-based inferences under spatial dependency in neuroimaging data. Specifically, we employ hierarchical mixture models with a hidden Markov random field structure to incorporate the spatial dependency between voxels. A nonparametric specification is proposed for the effect size distribution to flexibly estimate the underlying effect size distribution. Simulation experiments demonstrate that compared with a naive estimation method, the proposed methods can substantially reduce the selection bias in the effect size estimates of the selected voxels with the greatest observed associations. An application to neuroimaging data from an Alzheimer’s disease study is provided.

Funder

Open Access Series of Imaging Studies

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3