Affiliation:
1. Department of Mathematics, Kunsan National University, Kunsan 573-701, Republic of Korea
2. Department of Mathematics, Jeonbuk National University, Jeonju 561-756, Republic of Korea
Abstract
LetGbe a uniquely2-divisible commutative group and letf,g:G→Candσ:G→Gbe an involution. In this paper, generalizing the superstability of Lobačevskiǐ’s functional equation, we considerf(x+σy)/22-g(x)f(y)≤ψ(x)orψ(y)for allx,y∈G, whereψ:G→R+. As a direct consequence, we find a weaker condition for the functionsfsatisfying the Lobačevskiǐ functional inequality to be unbounded, which refines the result of Găvrută and shows the behaviors of bounded functions satisfying the inequality. We also give various examples with explicit involutions on Euclidean space.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献