A Quantum-Inspired Optimization Strategy for Optimal Dispatch to Increase Heat and Power Efficiency

Author:

Vanitha K.1,Jyothi B.1ORCID,Kumar R. Seshu2ORCID,Chandrika V. S.2ORCID,Singh Arvind R.3ORCID,Naidoo R. M.3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Koneru Lakshmaiah Education Foundation, Vijayawada, India

2. Department of Electrical and Electronics Engineering, KSR Institute for Engineering and Technology, Tiruchengode, India

3. Department of Electrical, Electronics and Computer Engineering, University of Pretoria, Pretoria, South Africa

Abstract

Combined heat and power (CHP) systems are widely used in industries for their high energy efficiency and reduced carbon emissions. The optimal dispatch of CHP systems involves scheduling the operation of various equipment to minimize the total operational cost while meeting the heat and power demand of the facility. In this research work, a novel quantum-inspired optimization algorithm is proposed for the first time to solve the optimal dispatch problem of CHP systems. The proposed algorithm combines the principles of quantum mechanics with classical optimization algorithms to achieve a better solution. The algorithm uses quantum gates to perform quantum operations on the optimization variables, which allows for the exploration of a larger search space and potentially better solutions than classical algorithms. The proposed algorithm also incorporates a classical optimizer to refine the numerical evaluations acquired from the quantum operations. The performance of the adopted optimization technique was demonstrated by associating it with various other optimization techniques based on factors such as the speed of convergence, computational time, and the quality of the solution. The comparison is made on two standard CHP systems subjected to various quality and inequality constraints. The simulation results indicate that the quantum-inspired optimization technique surpassed the other algorithms in both solution quality and computational efficiency. The implemented algorithm provides a promising solution to the optimal dispatch problem of CHP systems. Future research can further explore the application of quantum-inspired optimization algorithms in other energy systems and optimize the algorithm’s parameters to improve its performance.

Funder

SANLiC Gold

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3